ARCADIA: Model-Based Collaboration for System, Software and Hardware Engineering

An architecture-centric, tool-supported method

Jean-Luc Voirin & Stéphane Bonnet
CSD&M 2013
1. Essentials of the Arcadia method
2. Arcadia-dedicated modeling workbench
3. Return on experiment
Requirements for a Scalable and Adaptable Method

- Early validation in short decision loop
- Multi-viewpoint trade-off analysis
- ARCADIA: Architecture Analysis & Design Integrated Approach
- Tooled-up ecosystem-wide collaboration
- Multi-level impact analysis

How to improve agility and flexibility of overall engineering?
ARCDIA Goals & Action Means

One Need Definition for all

Specialities know-how confronted to architecture

Need & Architecture driving IVVQ

One global method, adaptable/adapted to each domain

Efficiently support and secure the engineering collaboration
Early Validation: Specialties Know-How Confronted to Architecture

Multi-viewpoint trade-off analysis (see ISO 42010 standard)
Mastering Complexity through Multiple Abstraction Levels

System Engineering

Sub-Systems Engineering

Software/Hardware Engineering

Maintaining consistency across engineering phases
Using ARCADIA Engineering Models to Drive IVVQ

Define IVV Strategy
Focus on Functional Content and Architecture

Master Development Ups and Downs

Control Maturity of Deliveries

Optimize IVVQ Globally (incl. Enabling Systems / Test Means)

Operational Need, Functional Contents
System Components
Test Benches

Mission System
Radar
Receiver
Software/HW
Agenda

1. Essentials of the Arcadia method
2. Arcadia-dedicated modeling workbench
3. Return on experiment
Method-Supporting Tool: A Key Enabler

<table>
<thead>
<tr>
<th>Manage Information Complexity</th>
<th>Ease Capitalization</th>
<th>Manage a Common Reference Model</th>
</tr>
</thead>
<tbody>
<tr>
<td>Automatic synthesis, simplification on diagrams, modelling aids</td>
<td>Concepts</td>
<td>Configuration management</td>
</tr>
<tr>
<td>Modularity (viewpoints and transitions)</td>
<td>Engineering rules</td>
<td>Collaboration between stakeholders (multi-user access on a shared model)</td>
</tr>
<tr>
<td>Separation of concerns through viewpoints and diagram layers</td>
<td>Architectural assets</td>
<td>Coupling with change management, test environments, documentation generation, etc.</td>
</tr>
<tr>
<td>Centralize information managed by specialized tools</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Arcadia-supporting tools are crucial for the best benefit of the method.
Rationale for an Arcadia-Dedicated Workbench

Several Alternatives
- Arcadia method is tool-agnostic
- Tooling can be minimal… or sophisticated
- Profiling UML/SysML would be a natural option

Thales previous experiences with UML Profiling
- Poor adoption by system engineers
- Meta-models constrained by UML concepts
- Representations constrained by existing UML diagrams

Development of a dedicated workbench (DSL)
- Freedom both in language and representation
- Close to UML/SysML, interoperable with MODAF-like Architecture Frameworks
- Extensible in many ways for domain-specific purposes (Sirius / Eclipse EMF foundations)
Focus on Two Keys of the Arcadia Modeling Workbench

Hiding complexity: Model ≠ Representations

Actual Model Content

Graphical Representations

Layered / filtered diagrams for viewpoint visualization

- System Architecture
- Safety Viewpoint
- Resource Viewpoint

No Ports on F1, F2, F21, F22

« Simplification mode » active
Overview of the Modeling Workbench Main Features

Edition Tools
Layered diagrams, Tables, Editors
Overview of the Modeling Workbench Main Features

Main Features

- Embedded Methodological Guide
- Edition Tools
 - Layered diagrams, Tables, Editors

System Analysis

- Operational Analysis
- System Analysis: Formalize System Requirements
- Logical Architecture

Edition Tools

- Layered diagrams
- Tables
- Editors
Overview of the Modeling Workbench Main Features

Model Analysis
Semantic browser, Model check, Etc.

Edition Tools
Layered diagrams, Tables, Editors

Embedded Methodological Guide

Consistency (22 items)
- Acquire meteo data (Function) shall be realized by Capture temperature (Function): both contain Warning TC_DF_14
- Both bounds of Functional Exchange should realize bounds of the realized FunctionalExchange: Warning TC_DF_05
- Both bounds of Functional Exchange should realize bounds of the realized FunctionalExchange: Warning TC_DF_05
- Both bounds of Functional Exchange should realize bounds of the realized FunctionalExchange: Warning TC_DF_05
- Both bounds of Functional Exchange should realize bounds of the realized FunctionalExchange: Warning TC_DF_05
- Both bounds of Functional Exchange should realize bounds of the realized FunctionalExchange: Warning TC_DF_05
- Elaborate current situation (Function): shall be realized by Transmit data (Function): both contain Warning TC_DF_14

Components (2 items)
- Collect meteo data
- Weather

Dataflows (16 items)
- Collect meteo data (Function) shall be realized by Capture temperature (Function): both contain Warning TC_DF_14
- Both bounds of Functional Exchange should realize bounds of the realized FunctionalExchange: Warning TC_DF_05
- Both bounds of Functional Exchange should realize bounds of the realized FunctionalExchange: Warning TC_DF_05
- Both bounds of Functional Exchange should realize bounds of the realized FunctionalExchange: Warning TC_DF_05
- Both bounds of Functional Exchange should realize bounds of the realized FunctionalExchange: Warning TC_DF_05
- Both bounds of Functional Exchange should realize bounds of the realized FunctionalExchange: Warning TC_DF_05
- Elaborate current situation (Function): shall be realized by Transmit data (Function): both contain Warning TC_DF_14
Overview of the Modeling Workbench Main Features

Logical Architecture
-

Physical Architecture
-

Edition Tools
Layered diagrams, Tables, Editors

Embedded Methodological Guide

Model Analysis
Semantic browser, Model check, Etc.

Iterative Transition Tools
Traceability, Generation
Overview of the Modeling Workbench Main Features

- **Edition Tools**: Layered diagrams, Tables, Editors
- **Embedded Methodological Guide**
- **Modularity & Reuse**: Libraries, Patterns, Etc.
- **Model Analysis**: Semantic browser, Model check, Etc.
- **Iterative Transition Tools**: Traceability, Generation
Overview of the Modeling Workbench Main Features

Model Monitoring
- Progress, metrics

Edition Tools
- Layered diagrams, Tables, Editors

Embedded Methodological Guide

Modularity & Reuse
- Libraries, Patterns, Etc.

Model Analysis
- Semantic browser, Model check, Etc.

Iterative Transition Tools
- Traceability, Generation

Main Features
- Model Analysis Semantic browser, Model check, Etc.
- Embedded Methodological Guide
- Edition Tools Layered diagrams, Tables, Editors
- Modularity & Reuse Libraries, Patterns, Etc.
- Model Monitoring Progress, metrics

Overview of the Modeling Workbench Main Features
Overview of the Modeling Workbench Main Features

Extensibility
New diagrams, new layers, M2 extensions, Etc.

Model Monitoring
Progress, metrics

Modularity & Reuse
Libraries, Patterns, Etc.

Iterative Transition Tools
Traceability, Generation

Edition Tools
Layered diagrams, Tables, Editors

Embedded Methodological Guide

Model Analysis
Semantic browser, Model check, Etc.

Quick demonstration!
1. Essentials of the Arcadia method
2. Arcadia-dedicated modeling workbench
3. Return on experiment
Return on experiment

Proven Benefits

- A strong lever for engineering transformation
- Field-proven in real industrial situations
- Leading to a better mastering of products, costs and cycles
- Improving architecture quality and sharing as well as IVV mastering

Deployed or under adoption in various Thales divisions, including industrial partnerships
Critical Information Systems
- Ground Exploitation Systems
- Command & Control (air, sea, railways…)
- Large secured Communication Networks…
- Satellite Control Networked Ground Stations

Embedded Systems
- Combat Systems (Radar, Self Protection, Optronics…)
- Mission Systems (Air, Sea, Ground)
- Satellite Constellations
- Avionics Suites
- Computing Systems
- Electrical Power Systems
- Thermal Cooling Systems
- Railways signalling Systems

Engineers trained per year
500+

Daily users
1000+

Projects
200,000+

Diagrams / Models
Nodes / Diagrams
Model Elements
Thank you for your attention!

Any Questions?